
 1

An Architecture that Treats Everyday Objects as Communicating Tangible

Components

Achilles Kameas Stephen Bellis Irene Mavrommati

Computer Technology Institute

Achilles.Kameas@cti.gr

National Microelectronics

Research Center

Computer Technology Institute

Irene.Mavrommati@cti.gr

 sbellis@nmrc.ucc.ie

Kieran Delaney Martin Colley Anthony Pounds-Cornish

National Microelectronics

Research Center

University of Essex

martin@essex.ac.uk

University of Essex

apound@essex.ac.uk

kdelaney@nmrc.ucc.ie

Abstract

The paper describes research that has been carried

out in “extrovert-Gadgets”, a research project funded in

the context of EU IST/FET proactive initiative
“Disappearing Computer”. It presents a set of

architectures for the composition of ubiquitous computing

applications. The proposed architectures are part of GAS

(Gadgetware Architectural Style), a generic architectural

style, which can be used to describe everyday

environments populated with computational artifacts. The
overall innovation of the GAS approach lies in viewing

the process where people configure and use complex

collections of interacting eGadgets, as having much in

common with the process where system builders design

software systems out of components. This approach

regards the everyday environment as being populated
with tens even hundreds of artifacts, which people (who

are always in control) associate in ad-hoc and dynamic

ways.

1. Introduction

This paper presents a set of architectures for the

composition of ubiquitous computing applications. The

proposed architectures are part of GAS (Gadgetware

Architectural Style), a generic architectural style, which

can be used to describe everyday environments populated

with computational artifacts.

The paper describes research that has been carried out

in “extrovert-Gadgets”, a research project funded in the

context of EU IST/FET proactive initiative “Disappearing

Computer” [3]. This project [4] aims to provide a

conceptual and technological framework that will engage

and assist ordinary people in (re)configuring or using

systems composed of computationally enabled everyday

objects, which are able to communicate using wireless

networks (these objects are sometimes called “artifacts”).

In that sense, artifacts are treated as reusable

“components” of a changing everyday environment.

1.1. Basic concepts

The basic definitions underlying this generic concept

are:

� eGadget: eGadgets (eGts) are everyday physical

objects enhanced with sensing, acting, processing and

communication abilities. Moreover, processing may

lead to “intelligent” behavior, which can be manifested

at various levels. eGts can be regarded as artifacts that

can be used as building blocks to form eGadgetworlds,

with the support of GAS;

� Plugs: They are software classes that make visible the

eGt’s capabilities to people and to other eGts. They

may also have tangible manifestation on the eGt’s

physical interface, so that users can utilize them in

forming Synapses;

� Synapses: They are associations between two

compatible Plugs;

� eGadgetworld: An eGadgetworld (eGW) is a dynamic,

distinguishable, functional configuration of associated

eGts (Figure 1), which communicate and / or

collaborate in order to realize a collective function.

eGWs are formed purposefully by an actor (user or

other) and appear as functionally unified entities.

A Gadgetware Architectural Style (GAS) constitutes a

generic framework shared by both artifact designers and

users for consistently describing, using and reasoning

about a family of related eGWs. GAS defines the concepts

and mechanisms that will allow people (eGadget users) to

define and create eGWs out of eGts, and use them in a

consistent and intuitive way.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

 2

FiguFiguFiguFigure re re re 1111. Schematic diagram of the concept of . Schematic diagram of the concept of . Schematic diagram of the concept of . Schematic diagram of the concept of

eGadgetworldseGadgetworldseGadgetworldseGadgetworlds

1.2. Innovation

The main idea behind the “ubiquitous computing”, or

“ambient computing”, or “disappearing computer”

concept is that the computer “disappears” and computing

services are made available to users throughout their

physical environment [15].

Several research efforts are attempting to design

ubiquitous computing architectures. In the context of the

disappearing computer initiative, project “Smart-Its” [10]

aims at developing small devices, which, when attached to

objects, enable their association based on the concept of

“context proximity”. Thus, the collective functionality of

such a system is mainly composed of the computational

abilities of the Smart-Its, without taking into account the

“nature” of the participating objects. A more complete and

generic approach is undertaken by project “Oxygen”,

which enables human-centered computing by providing

special computational devices, handheld devices, dynamic

networks and other supporting technologies [6]. Another

interesting disappearing computer project is “Accord”,

which is focused in developing a Tangible Toolbox (based

on the metaphor of a tangible puzzle) that will enable

people to easily embed functionality into existing artifacts

around the home and enable these devices to be integrated

with each other [1].

The overall innovation of the GAS approach lies in

viewing the process where people configure and use

complex collections of interacting eGadgets, as having

much in common with the process where system builders

design software systems out of components. This

approach regards the everyday environment as being

populated with tens even hundreds of artifacts, which

people (who are always in control) associate in ad-hoc and

dynamic ways.

Then, GAS-OS, the software that implements GAS,

can be considered as a component framework [14]. GAS-

OS manages resources shared by eGts, determines their

interfaces and provides the underlying mechanisms that

enable communication (interaction) among eGts. Thus, it

can be considered as a mini-operating system “residing”

between the eGt’s intrinsic functions and hardware and

the people’s will to create more complex behavior.

The proposed concept supports the encapsulation of

the internal structure of an eGt (eGts are treated as “black

boxes”, based on their public interface as manifested by

the Plugs), and provides the means for composition of an

application, without having to access any code that

implements the interface. Thus, this approach provides a

clear separation between computational and compositional

aspects of an application [14], leaving the second task to

ordinary people, while the first can be undertaken by

experienced device designers or engineers.

The benefit of this approach is that, to a large extent,

system design is already done, because the domain and

system concepts are specified in the generic architecture

[13]; all people have to do is realize specific instances of

the system. The possible variation is declared in the eGt’s

Plugs, which serve as the primary mechanism for reuse.

Composition achieves adaptability and evolution: a

component-based application can be reconfigured with

low cost to meet new requirements [10], [13].

1.3. Structure of the paper

The rest of the paper is organized as follows: in the

next section, the principles that underlie the GAS

approach are described. Section 3 presents the architecture

of an eGt in different levels, starting from a hierarchy of

concepts and moving into the description of a high level

functional architecture, a detailed architecture and its

implementations. The next section describes the software

architecture of GAS-OS. The paper closes with a

discussion on the proposed approach, which includes an

example scenario of application and a presentation of

aspects of emerging behavior, as it is treated in the

proposed concept.

2. Principles, perspectives, dimensions and

scaling

By nature, eGts exhibit a dual presence, both in the

real and cyber (digital) worlds. In the former they appear

as tangible objects, occupying physical space for a certain

amount of time. In the cyber world, eGts appear as

software entities, which are instantiated and “run” on a

processing unit. These two “selves” of an eGt are tightly

interrelated: every eGt must have a representation in both

worlds and changes in one representation may affect the

other.

This “form vs. function dualism” is the main driving

force behind the “extrovert Gadgets” approach, which

gives rise to a set of seemingly competing concepts. The

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

 3

composition of eGts into an eGW is similar to the

construction of a software application using software

components. Thus, the “extrovert Gadgets” project

approaches the problem both from software engineering

and design engineering perspectives.

The basic assumption is that an eGt is an autonomous

and self-contained artifact, which locally manages its

resources (processor, memory, sensors/actuators etc). All

eGts are peers and no master eGt needs to be used. Some

eGts will be intelligent, in the sense that they will be able

to learn and improve their function by observing the

consequences of their actions. On the other hand,

eGadgetworld construction by lay people has some

interesting particularities with direct implications on the

design of the GAS:

� In contrast to the typical system engineering process,

there is no a priori system to be built. People just try

out their ideas until a satisfactory gadget configuration

is reached;

� People should not need to be engaged in any type of

formal “programming” in order to achieve the desired

functions. However, they need to be provided with

tools equivalent to a “programmer’s workbench”, so

that they can compose, trace and debug the eGWs;

� eGts are not necessarily provided as all-contained

black-box entities, but can also act as “parts” for

building larger “wholes”. Thus, the principles for

deciding on an eGt’s level of conceptuall granularity

need to be identified;

� eGts need to explicitly “advertise” their

interconnection capabilities to users through a

comprehensible “vocabulary” and metaphors (e.g. by

shape, visual probes, handles, etc).

People and technology are the two dimensions, which

also define the scaling possibilities of the concept. In

principle, this approach can scale both “upwards” (the

assembly of complex, distributed eGts out of simpler

ones) and “downwards” (the decomposition of eGts into

smaller parts). However, there are limitations imposed

both by technology (like number of eGts that can reside

within the same wireless network, bandwidth, range,

power supply, robustness of sensors and actuators) and

people capabilities (like number of eGadgets, Plugs and

Synapses, frequency of use, sustainability of

eGadgetworlds). The project will investigate the effect of

these factors in experiments that will be conducted during

the next year.

3. eGadgets as tangible components

An eGt is autonomous, perceived as one entity, though

it may have internal structure. It has an ID, a set of Plugs

and an internal state, which it manages locally. It can

participate in Synapses via its Plugs. It can always state its

ID, set of Plugs (and their state) and active Synapses (and

their state) in a universally understandable way at a

predefined communication channel. Moreover, using a set

of intelligent mechanisms, an eGt may be able to locally

optimize or adapt its behavior, or even optimize the

behavior of an entire eGadgetworld.

A Plug is an abstraction of the properties and abilities

of an eGadget. It is implemented as a record and contains

attributes and methods, which implement the ways it can

be used (protocol), the service it can offer (methods) and

its state (attributes). In fact, it is the only way other

eGadgets can use eGadget services and have access to the

eGadget properties. A Plug is accessible to other eGt

modules via GAS-OS only, thus providing a unified way

to access the resources of an eGW. All eGadgets come

with one TPlug and a set of Splugs (which depends on the

set of sensors/actuators of the eGt). The TPlug describes

physical properties (one per gadget), while the SPlug

describes services (one per service). Plugs have a direct

relation to the sensors / actuators and the functions

implemented in the eGt by its manufacturer.

Procedurally, an eGW is formed as a set of Synapses.

Once a Synapse is established, the involved eGts interact

on their own, independently and transparently of the

existence of Plugs. An eGW should be considered as

being always operational until explicitly disassembled by

the user. When switched on, each eGt constantly attempts

to re-establish its Synapses. Each Synapse within an eGW

may be mandatory (the eGW cannot function without it)

or optional (the functionality of the eGW is only reduced

without it).

3.1. High-level functional architecture of

eGadgets

The above concepts are mapped to a high-level

architecture of an eGt (shown in

Figure 2). According to it, an eGadget contains the

following software/hardware modules:

� The Gadget Management Software (GadgetOS) is

responsible for providing access to the eGt resources

(e.g. the RF unit, any sensors or actuators etc);

� The Collaboration Logic provides service discovery

services;

� The Computation Logic implements the intrinsic eGt

functions.

The following two software modules implement GAS-

related services:

� GAS-OS provides plug and synapse management

services;

� Agent implements intelligent mechanisms.

This approach follows the standard ISO layer model

for network communications and only requires two kinds

of interface definitions: GadgetOS to GAS-OS and GAS-

OS to Intelligent Agent/Computation Logic.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

 4

3.2. eGadget detailed architecture

The tangible self of an eGt is implemented with the

architecture shown in Figure 3. An eGt is made of a

matrix of sensors and actuators, an FPGA-based board,

which implements communication between the sensor or

actuator matrix and the processor and a (processor +

memory + wireless) module, which is currently served by

an iPaq or a Laptop.

Java Chip (contains JVM)

Sensors /

Actuators
RF Unit

Computation

Logic
Collaboration

Logic

Gadget Management Software (Gadget OS)

 GAS-OS

Agent

Other hardware

Figure Figure Figure Figure 2222. High. High. High. High----level eGadget architecturelevel eGadget architecturelevel eGadget architecturelevel eGadget architecture

The GAS-related middleware includes the following

modules: the GadgetOS module, which is specially

implemented per every eGt and used to control its

resources, the GAS-OS module, which manages the Plugs

and Synapses, the eGadget GUI, which at the moment

runs as a software simulation and the Agent, which

resides on an independent platform and communicates

with GAS-OS via sockets.

The communication between the GAS-OS of two eGts

is currently implemented using an XML-based messaging

system [12].

4. Current Implementation

eGadgets can be broken up into two main classes:

sensing eGts and actuating eGts. Examples of artifacts

already implemented include eChair, eDesk, eBook,

eLamp etc.

iPaqAgent

GUI

GAS-OS

GadgetOS

FPGA

Sensors /

Actuators

XML / Sockets

S
e

ri
a

l
R

u
n

o
n

Figure Figure Figure Figure 3333. Detailed eGadget architecture. Detailed eGadget architecture. Detailed eGadget architecture. Detailed eGadget architecture

While attempting to implement these eGts, we faced

several issues:

� Networking protocol: the tradeoff is between a robust,

powerful and a lightweight protocol. We decided to

use IEEE802.11, partly because it was stable enough

at the time of project development and partly because

this was not the focus of the project. We are however

aware that a lighter protocol, in terms of power and

time consumption might be required

� Messaging layer: The degree of stability and

dependability required from the GAS architecture is

beyond any of the P2P implementations that were

studied (among them JavaRMI, Jini and Jxta). In

addition, since there are numerous platforms and

hardware involved, it is not very practical to rely on

porting a non-custom architecture. Thus, we decided

to have the best of every world by implementing

eComP, our own architecture, while adopting some of

the excellent work done within the Jxta and other

projects.

� Messaging protocol: There are a number of

advantages of message-based communication over

remote procedure calls: it results in more loosely

coupled systems, where it is enough for the caller

object to create a message understandable by both

parties; it is an asynchronous way of communication,

so the “caller” does not crash in the case when the

server crashes while executing a method; the messages

used can contain either text or binary messages

wrapped in an envelope, which contains all data

necessary to route the message either directly or

through intermediate entities that forward the message

to the actual receiver without having to look at it;

finally, it can be cross-platform.

� Multicasting: The peer-to-peer networking module

that has been built relies on multicast sockets in order

to provide ad-hoc networking capabilities. Peers in the

ad-hoc network can be discovered without the

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

 5

existence of some central registry and routes to them,

even multi-hop ones, are discovered on demand.

However, this places the requirement on the available

wireless network to support multicasting, which is not

always the case.

� Processor and power: for reasons of portability and

robustness, all software is being written in Java. An

iPaq, which is equipped with a wireless card and runs

the Java Personal Edition is used to provide processing

power. The power provided by the iPaq is sufficient

for running the software; sensors and FPGAs are

powered by separate replaceable batteries.

4.1. Sensing eGadgets architecture

The sensing eGts architecture is based around

programmable technology and therefore can be viewed

generically as shown in Figure 4.

WLAN
iPAQ

or

Laptop

FPGA

PCB

Signal

conditioning
Sensors

Figure Figure Figure Figure 4444: Generic sensing: Generic sensing: Generic sensing: Generic sensing eGadget eGadget eGadget eGadget

The sensors that we have used are pressure pads, light

dependent resistors (LDRs), bend sensors, ultrasonic

transducers and tilt switches. The pressure pads are used

to detect the presence of a substantial weight such as a

person sitting on the eChair, while the LDRs have a dual

purpose; firstly for detecting a bigger range of weights

such as an object on the eDesk and secondly to detect

range of light levels, the luminosity of the eBook for

example. The eBook also has bend sensors embedded

into the spine to detect whether it is open or closed. An

ultrasonic transmitter and receiver pair is used to detect

the proximity of two objects from each other; the eTable

and eChair use this. Signal conditioning logic is used to

interface the sensors with a Field Programmable Gate

Array (FPGA) based circuit, which does some initial pre-

processing on the sensor data before sending it serially to

the iPAQ or Laptop. The iPAQ/laptop is used to host the

GAS-OS, which interprets the serial sensor data. Wireless

local area network PCMCIA cards are then used to

interconnect the eGts.

4.2. Actuating eGadgets architecture

The architecture of an actuating eGt (eLamp) is shown

in Figure 5. The eLamp receives status information from

synapsed eGts over the WLAN and this data is processed

by the GAS-OS residing in the iPAQ or the laptop.

Information on the required dimmer level is sent serially

to the FPGA PCB which implements pulse width

modulation (PWM) to produce an analogue signal whose

voltage level is proportional to the desired light level. The

analogue signal is the input to a voltage-controlled

dimmer, which is required to provide the higher voltages

necessary to dim the eLamp.

WLAN

iPAQ

or

Laptop

FPGA

PCB

Voltage

controlled

dimmer

Halog

en

lamp

Figure Figure Figure Figure 5555: eLamp architecture: eLamp architecture: eLamp architecture: eLamp architecture

4.3. The hardware modules

The hardware modules are based around field

programmable gate arrays (FPGAs), which give flexibility

for different eGts due to their reprogrammability. The

FPGA module, shown in Figure 6, uses the Xilinx Spartan

XC2S300E-7FG456C FPGA [8]. This FPGA is relatively

low cost while giving high gate equivalent and a large

number of digital inputs and outputs. The circuit board

includes an on board EEPROM so that the configuration

of the FPGA can be retained after the power is turned off.

The board also contains fast ZBT SRAM [5] for storage

of data if necessary. There are approximately 200 digital

IOs available for the input of sensor data, although for the

current scenario only a small percentage of these are used,

the table representing the maximum usage of 30 LDR

inputs. There are also 10 analogue inputs available which

use the Texas Instruments TLC549 A to D converter [7].

Figure Figure Figure Figure 6666: FPGA module: FPGA module: FPGA module: FPGA module

4.4. Interfaces and connectivity

The main interfaces in the eGts are:

� Sensor � FPGA board. To implement these interfaces

a generic signal conditioning board was designed. This

board allows either digital or analogue voltages to be

produced from the all the passive sensors that we have

used. The circuit includes variable potential dividers,

Schmitt trigger drivers and amplification to provide

the LVTTL digital signal levels or analogue inputs in

the range 0 to 3.3V.

� FPGA � iPAQ/laptop. A serial RS232 interface was

created for the two-way communication between the

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

 6

FPGA and iPAQ/laptop. A UART function was

programmed onto the FPGA to transfer parallel data

into serial format with the required start-stop bits and

data ratel. A piggyback board was created to drive the

RS232 serial cable from the LVTTL output of the

FPGA and buffer the information being sent in the

opposite direction. In the iPAQ serial port, Java

classes and drivers from serialio.com were used to

interface the serial data to the GAS-OS.

� iPAQ/laptop � WLAN. PCMCIA expansion packs

were used to connect the wireless cards to the iPAQs;

these cards could be directly plugged into the laptops.

� eGt � eGt. Cisco 350 series WLAN PC Cards were

used allow the various eGts to communicate with each

other [2]. These cards work on the IEEE802.11b

standard, which allows data transfer rates of up to

11Mbps. AD-HOC network mode was used to allow

the eGts to communicate with each other without the

use of an access point.

5. GAS-OS

GAS-OS is the middleware that runs on every eGt and

implements GAS concepts. It offers following services to

the user and to other eGts:

� Plugs discovery and advertising: The GAS-OS of a

specific eGt is responsible for the discovery of all

other Plugs (and consequently eGts) within range. For

this service, GAS-OS utilizes eComP [12]. It

multicasts a hello message and all eGts within range

respond to it by sending an XML-based advertisement,

which contains all the data that one eGt can know

about the other, such as the list of SPlugs, the current

IP address it has and the port it listens to, etc. Also, the

GAS-OS gives the TPlug the ability to give to any

connecting Plug the list of SPlugs that an eGt has.

Given the fact that every eGt has a TPlug, the GAS-

OS guarantees the accessibility of all the eGt Plugs.

� Synapse establishment – disestablishment: GAS-OS

enables the user to form or destroy Synapses between

Plug. It ensures that Plugs get connected only when

they are available and “compatible” (an ontology is

used to define the degree of compatibility). Then, it

takes care of the handshaking between the two

connecting Plugs until the Synapse is established.

GAS-OS provides the means for successful connection

or disconnection, ensuring that these procedures are

executed as atomic ones that either succeed or fail

before releasing the Plugs. Moreover, it ensures that

the Plugs will not stay locked for infinite amount of

time, in the case where a Synapse establishment fails.

The Plugs are fully functional and do not stay locked

during this procedure. This is very important because

network delay can be long even for successful Synapse

establishments. Also, it is the GAS-OS responsibility

to ensure that when an eGadget is shutting down, all

connected Plugs are notified. Finally, the GAS-OS

ensures that on startup an eGt will attempt to

reestablish the Synapses of the eGWs it participated in

when it was shutdown.

� Synapse management: eGts are notified about changes

in the state of other connected eGts via the Plugs.

GAS-OS is responsible for sending and handling these

notifications and also for forwarding them to the

computational logic of the eGt. Thus the GAS-OS acts

as a mediator in the eGts collaboration.

5.1. Architecture

GAS-OS software is composed of the following

modules (Figure 7):

� eComP: it handles the networking communication

between the eGts. It is a peer-to-peer software module

that enables the dynamic discovery and utilization of

remote resources. It is based on message exchanging

between remote peers of a network. No infrastructure

is assumed to be present, except for TCP/IP

networking. Discovery of remote peers is performed

using multicast socket connections, thus it does not

require some sort of central infrastructure. eComP

does not expect the connected peers to be statically

bound to a specific IP address. Communication is

based on the unique eComP IDs that peers have, which

remain the same even when peers may switch

networks and utilize new IPs. eComP is implemented

for the “J2ME + CDC profile” platform [12].

GAS-OS

kernel

Interface to

GadgetOS

Agent

Proxy

Message

Factory
eComp

Intelligent

Agent

GadgetOS

Other

GAS-OS

GAS Ontology

Figure Figure Figure Figure 7777. GAS. GAS. GAS. GAS----OS architectureOS architectureOS architectureOS architecture

� The message factory: it is responsible for encoding

and decoding GAS-OS messages. Since GAS-OS

utilizes message-based communication, all data

exchange is performed using formatted messages. In

order to make the communication procedure easier and

to maximize code reuse, this module was developed so

that the standard part of XML formatting and decoding

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

 7

that is necessary for the communication is not coded

into every single GAS-OS class. The message factory

module is implemented for the Personal Java platform.

� The GadgetOS interface: it handles communication

between the GAS-OS and the GadgetOS of the

eGadget. This module offers a standard interface

through which the GAS-OS can “talk” to the eGadget

specific code that the manufacturer implements. Thus,

updating of the eGadget specific code is easy. The

critical issue here is that the manufacturer ensures that

this code is compatible with Personal Java.

� The Agent Proxy: it is the module that is attached to

and collaborates with the Intelligent Agent. It is

implemented for the Personal Java platform.

� The GAS Ontology: it describes the hierarchy of basic

concepts and the local eGt capabilities and experience.

It is encoded in XML; it contains a set of basic terms

that are understandable by all eGts and a mechanism

to translate local definitions using the basic terms. It is

used to ensure semantic compatibility between

different eGts.

� The GAS-OS kernel: this is the central module of the

GAS operating system. It utilizes the functions of the

modules mentioned above to offer the GAS-OS

services. The kernel is responsible for initialization

and management of Plugs and implements the services

offered by the GAS-OS. It has been implemented for

the Personal Java platform.

5.2. Intelligent aspects

GAS-OS embeds intelligent mechanisms, some of

which have already been implemented with the use of the

Intelligent Agent [9]. GAS-OS can provide the following

intelligent services:

� Matching of Plugs: Synapse formation is based on

Plug definition. In some cases, a mapping is formed

among the value range of each Plug, as part of

Synapse definition. Currently, compatibility is based

on data definitions only, but an intelligent mechanism

will be developed to automatically deduce

compatibility and to propose mappings using Plug

description. The GAS ontology will be used as a

common referent.

� Replacement of a missing service in the definition of a

GW: if a Plug is not available at the end of a Synapse

(which might mean that the eGt is not itself available),

GAS-OS will look for a replacement service offered

by another Plug. Again, the GAS ontology will be

used to deduce service suitability.

� Adaptation of mappings: the user may create an initial

mapping for a Synapse between the values of the two

participating Plugs. GAS-OS, with the help of the

Agent, monitors the way the Synapse is used and

adapts the initial mapping to the actual (or changing)

requirements of the user.

� Discovery of usage patterns: using data gathered by

the Agent, GAS-OS can locate patterns in eGts’ usage

and hence suggest new Synapses.

� Recording of experience: an eGt’s experience is coded

in its internal database of rules.

The Intelligent Agent is a mechanism that handles

large vectors of sensor / actuator data. It has access to the

local eGt’s sensors and to the sensors of other eGts it is

connected to via Synapses. The Agent can function both

at a local and at an eGW level. In the former, it

communicates directly only with GAS-OS, thus ensuring

module independence. In the latter, it can work with

whatever set of Synapses the user has established and via

them will have access to the other eGts.

The Agent forms rules based on the way people use

eGadgets and learns new behaviors by modifying the

rules. The connected eGadgets form the context in which

the Agent produces new rules. So, when the configuration

of an eGW changes, the rule set needs updating.

5.3. Interaction architecture

The user interacts with eGts and eGWs with the use of

an eGadgetworld Editor (GE). To meet the above

requirements, the GE provides the following services to

the user:

� Discovery of eGadgets and their Plugs;

� Information about the discovered eGadgets, Plugs,

their capabilities and offered services;

� Supporting the user in creation, editing and destroying

a Synapse;

� Creation and management of eGadgetworlds.

Two types of GE will be implemented:

� The Full Portable Gadgetworld Editor (FPGE), which

runs on a PC or Laptop and offer the complete set of

eGW editing functionality

� The Restricted Portable Gadgetworld Editor (RPGE),

which will run on a PDA and offer only the basic set

of eGW editing functionality (creating and editing

Synapses) in accordance to the limited display

capabilities of the device

6. Discussion

Let’s first assume an example scenario involving the

use of eGts. “John, a 21-year-old Law student lives in a

student dormitory, in the University campus. He is

familiar with PC use, but is by no means a programming

expert. John has recently created his Study eGadgetworld,

with a new “extrovert-Gadgets” system that he recently

bought and has been using for a week. He has set up this

eGW to turn on the light automatically, when he is

studying on his desk, since the desk light switch is at the

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

 8

back of the shelves and it is often a hustle to find it and

switch it on”.

The above description refers to a simple eGW

composed of the following eGts: Desk, desk-lamp, book,

chair. The Plugs of these eGts are shown in Figure 8

(key: O=output plug, I=input plug, H=Higher level

(composite) plug). The overall eGW function can be

described as:

When the particular CHAIR is NEAR the DESK AND

ANY BOOK is ON the DESK AND SOMEONE is sitting

on the CHAIR AND The BOOK is OPEN

THEN

ADJUST the LAMP INTENSITY according to the

book LUMINOCITY.

Desk Lamp Book Chair

T-plug O T-plug O T-plug O T-plug O

Weight O On/off I Open / closed O Occupancy O

Proximity O Intensity I Luminosity O

Figure Figure Figure Figure 8888. The Plugs of example eGts. The Plugs of example eGts. The Plugs of example eGts. The Plugs of example eGts

The Synapses required to implement the eGW are:

Desk (weight=1) -> Lamp (on/off=on)

Chair (occupancy=1) -> Lamp (on/off=on)

Book (open/closed=open) -> Lamp (on/off=on)

Book (luminosity) -> Lamp (intensity)

The support for emerging behavior is a core

requirement of ubiquitous computing. In the above simple

scenario, John “creates” emerging behavior from the eGts

in his possession by associating them in an ad-hoc way.

Within the “extrovert Gadgets” project, “emerging

behavior” is approached from two perspectives:

� From the people’s perspective: people are considered

to be active shapers of their environment (which

consists of eGadgets), not simple consumers of

technology. In project terms, this means that people

may form unexpected collections of Synapses by

associating compatible Plugs in an ad-hoc way to

perform a not predefined function, associating

seemingly incompatible or partially incompatible

Plugs or using parts of eGadgets via their Plugs in

order to form virtual eGadgets

� From the technology perspective: GAS technology

supports the above actions (thus facilitating emerging

behavior) by defining Plugs as abilities, independently

of their possible uses, augmenting an eGadgetworld

with services found in the environment, creating

Synapses based on stated or perceived people goals,

maintaining the state of an eGadgetworld and learning

from monitoring people behavior

The “extrovert-Gadgets” project is currently halfway

along its work plan. The first version of GAS-OS,

described in this paper, has been implemented and tested

successfully in sample scenarios (for the needs of which,

about ten eGts have been constructed). An expert

appraisal was carried out to test the basic concepts,

yielding valuable insight. Currently, GAS-OS is being

redesigned to become a distributed OS and to integrate

better intelligent services. During the next year, the formal

aspects of the approach will be defined (including the

ontology) and experiments have been planned to test the

boundaries (imposed by technology and possibly

concepts) of the approach.

7. References

[1] Accord project website:

http://www.sics.se/accord/home.html

[2] Cisco website:

http://www.cisco.com/

[3] Disappearing Computer initiative:

http://www.disappearing-computer.net/

[4] e-Gadgets project website:

http://www.extrovert-gadgets.net

[5] Micron website:

http://www.micron.com/

[6] Oxygen project website:

http://oxygen.lcs.mit.edu/

[7] Texas Instruments website:

http://www.ti.com/

[8] Xylinx website:

http://www.xilinx.com/

[9] Hagras H., et al., Incremental Synchronous Learning

for Embedded-Agents Operating in Ubiquitous

Computing Environments, to appear in the book

entitled Soft Computing Agents: A New Perspective for

Dynamic Information Systems, in the International

Series "Frontiers in Artificial Intelligence and

Application" by IOS Press.

[10] L.E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta,

M. Beigl and H.W. Gellersen, “Smart-Its Friends: A

Technique for Users to Easily Establish Connections

between Smart Artefacts”, in Proceedings of

UBICOMP 2001, Atlanta, GA, USA, Sept. 2001.

[11] J. Hopkins, “Component primer”, Communications of

the ACM, 43(10), pp 27-30.

[12] A. Kameas, D. Ringas, I. Mavrommati and P. Wason,

“eComP: an Architecture that Supports P2P

Networking Among Ubiquitous Computing Devices”,

in Proceedings of the IEEE P2P 2002 Conference,

Linkoping, Sweden, Sept. 2002.

[13] Meijler, T.D. and O. Nierstrasz, Beyond objects:

components, in Cooperative information systems:

current trends and directions (M. Papazoglou and G.

Schlageter – eds), Academic Press, 1997

[14] Schneider, J.G. and O. Nierstrasz, Components, scripts

and glue, in Software architectures – advances and

applications (J. Hall and P. Hall – eds), Springer-

Verlag 1999, pp 13-25.

[15] M Weiser, “Some Computer Science Issues in

Ubiquitous Computing”, Communications of the ACM,

36(7), pp 75-84.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

